前沿综述:描述生物系统涌现行为的景观和流理论视角
导语
生物物理杂志(Journal of Biological Physics)2022年初发布特刊《景观理论对生物学的革命性影响》以庆祝生物物理先驱Hans Frauenfelder的100岁诞辰,其中收录了美国纽约州立大学石溪分校汪劲教授的综述文章。文章对平衡生物系统的景观理论和非平衡生物系统的景观和流理论(landscape and flux theory)作为全局驱动力进行了综述。在该文中,行为的涌现、熵与自由能相关的热力学,以及速率和路径的动力学,都得到定量论证。文章还讨论了层级化组织结构。作者通过图示说明了理论在各个生物学领域的应用,涵盖蛋白质折叠、生物分子识别、特异性、生物分子演化和平衡系统设计、细胞周期、分化与发育、癌症、神经网络和脑功能、非平衡系统的演化、基因组结构动力学的跨尺度研究、景观和流的实验量化和验证等。总体而言,这为景观和流理论视角的生物系统行为、动力学与功能,提供了一个全局的、物理的和定量的图景。以下是对该综述文章中重要章节的摘录翻译和整理。
研究领域:非平衡物理学,景观和流理论,生物物理,系统生物学,涌现
汪劲 | 作者
梁金、刘培源 | 编译
邓一雪 | 编辑
论文题目:
Perspectives on the landscape and flux theory for describing emergent behaviors of the biological systems
论文地址:https://link.springer.com/article/10.1007/s10867-021-09586-5
一、导论二、平衡景观1. 蛋白质折叠2. 特异性和药物发现3. 蛋白质演化与设计三、非平衡系统的景观和流理论1. 非平衡景观和流作为一般动力学的驱动力2. 状态之间的主要路径和动力学3. 一般网络的非平衡热力学、熵和自由能四、非平衡景观和流的例子1. 细胞周期2. 细胞分化3. 癌症4. 神经网络和大脑的功能5. 进化五、交叉尺度的例子1. 基因组动力学2. 不同尺度的层级组织六、景观和流的实验量化七、展望
一、导论
一、导论
二、平衡景观
二、平衡景观
1. 蛋白质折叠
2. 特异性和药物发现
图2. 特异性概念的图示。左图:一个配体对多个具有高亲和力和高特异性受体(1对Pn)的常规特异性。中图:我们将具有一个大受体(在思想实验中由许多其他受体组成)的配体的固有特异性定义为,固有结合模式相对于其他(1对Mn)的区分。右图:另一种定义多个配体对一个具有高亲和力和高特异性受体(Nn vs. M)的特异性的方法 [23]。
3. 蛋白质演化与设计
图3. (a) 序列和结构空间中天然存在的蛋白质的示意图;(b) 序列和结构空间中蛋白质进化的量化能量景观;(c) 蛋白质折叠的疏水核心;(d) 分子结合。(e) 具有大耦合值的位置通过接触(虚线)和成键(实线)形成网络。
三、非平衡系统的景观和流理论
三、非平衡系统的景观和流理论
1. 非平衡景观和流作为一般动力学的驱动力
2. 状态之间的主要路径和动力学
图4. 2D 和 3D 的非平衡景观图 ,曲线表示势能盆地之间不可逆的主要转变路径 [88]
3. 一般网络的非平衡热力学、熵和自由能
四、非平衡景观和流的例子
四、非平衡景观和流的例子
1. 细胞周期
1. 细胞周期
图5. (a)细胞周期的 G1、S/G2、M 阶段和检查点。(b)不规则墨西哥草帽形状的细胞周期景观。(c)2D 景观图。
2. 细胞分化
图6. 基因表达(x) 上的量化 Waddington 景观,沿着由基因调控强度变化刻画的发育方向(b,即自激活和相互抑制的基因调控环路的调控变化方向)的演化 [78] 。
3. 癌症
3. 癌症
图7. (上)胃癌的调控网络,包含15个节点和72个调控,其中红色表示激活的调控,蓝色表示抑制的调控。(下)景观上出现三种稳定状态吸引子:正常(normal)、胃炎(Gastritis)和胃癌(Gastric cancer)。
4. 神经网络和大脑的功能
图8. Hopfield 神经网络的计算能量函数景观示意图 [93]
5. 进化
5. 进化
图9. 适应度景观理论将进化适应过程量化为一个爬山过程,直到达到局部适应度峰值 (A)而景观和流理论将进化适应过程量化为一个螺旋下降过程,直到达到势能谷。这个谷可以是一个封闭环 (B)
五、交叉尺度的例子
五、交叉尺度的例子
1. 基因组动力学
图11. 从染色体结构动力学角度,说明了胚胎干细胞(ESC)、正常细胞和癌细胞之间的6种细胞状态转变过程。从顶部到底部的垂直箭头表示染色体压缩的程度 [154]。
2. 不同尺度的层级组织
图12. (a) 溶剂-高分子快速碰撞的示意图,作为随机性的来源,与多能量阱景观一起,引起具有多种状态的单个高分子的动力学跳跃过程(如圆内所示)。(b) 在更高层级,许多相互作用的化学个体,每个具有多个离散状态,会形成介观非线性反应系统 [3]。
六、景观和流的实验量化
六、景观和流的实验量化
图13. 左:直方图给出了从实时实验中收集的自抑制基因环路的163个单细胞荧光轨迹的强度分布。红色曲线是 HMM 的拟合强度分布 [158]。右:势能景观是通过实验测量的λ 噬菌体系统两种基因表达数值的 2D 直方图计算所得。图中H表示 CI 和 Cro 的高表达,L 表示低表达,组合起来共四种表达状态 [157]。
图14. HRP 最简单的动力学结构,具有2个未结合酶状态,和非零内部环路流 J。E1 和 E2 是自由 HRP 的两种不同构象,ES 是 HRP 的底物结合态。[160]
七、展望
七、展望
参考文献
Anderson, P.W.: More if different: Broken Symmetry and the nature of hierarchical structure in sci- ence. Science 177, 393–396 (1972)
Laughlin, R.B., Pines, D., Schmalian, J., Stojkovic, B.P., Wolynes, P.: The middle way. Proc. Natl. Acad. Sci. USA 97, 32–37 (2000)
Qian, H., Ao, P., Tu, Y.H., Wang, J.: A framework towards understanding mesoscopic phenomena: emesrgent unpredictability, symmetry breaking and dynamics across scales. Chem. Phys. Lett. 665, 153–161 (2016)
Hopfield, J.J.: Physics, computation, and why biology looks so different. J. Theor. Biol. 171, 53–60 (1994)
Fang, X., Kruse, K., Lu, T., Wang, J.: Nonequilibrium physics in biology. Rev. Mod. Phys. 91, 045004 (2019)
Wang, J.: Landscape and flux theory of non-equilibrium dynamical systems with application to biol- ogy. Adv. Phys. 64, 1–137 (2015)
Frauenfelder, H., Parak, F., Young, R.D.: Conformational substates in proteins. Annu. Rev. Biophys Biophy. Chem. 17, 451 (1988)
Frauenfelder, H., Sligar, S., Wolynes, P.: The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991)
Frauenfelder, H., Wolynes, P.G.: Biomolecules: where the physics of complexity and simplicity meet. Phys. Today. 47, 58–64 (1994)
Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H., Gunsalus, I.C.: Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975)
Chu, X., Wang, J.: Specificity and affinity quantification of flexible recognition from underlying energy landscape topography. PLOS Comp. Biol. 10, e1003782 (2014)
Chu, X., Wang, J.: Microscopic chromosomal structural and dynamical origin of cell differentiation and reprogramming. Adv. Sci. 7, 2001572 (2020)
Frauenfelder, H., Petsko, G.A., Tsernoglou, D.: Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280, 558–563 (1979)
Levinthal, C.: Mossbauer Spectroscopy in Biological Systems: Proceedings of a Meeting Held at Allerton House, Monticello, Illinois. Debrunner P., Tsibris J., Munck E, Proceedings of a meeting held at Allerton House, pp. 22–24 (1969)
Wang, J., Verkhivker, G.M.: Energy landscape theory, funnels, specificity, and optimal criterion of biomolecular binding. Phys. Rev. Lett. 90, 188101 (2003)
Bryngelson, J.D., Onuchic, J.N., Socci, N.D., Wolynes, P.G.: Funnels, pathways, and the energy land- scape of protein folding: a synthesis. Proteins Struct. Funct. Bioinform. 21, 167–195 (1995)
Onuchic, J.N., Luthey-Schulten, Z., Wolynes, P.G.: Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997)
Dill, K.A., Chan, H.S.: From Levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10–19 (1997)
Wang, J., Oliveira, R.J., Chu, X.K., Whitford, P.C., Chahine, J., Han, W., Wang, E.K., Onuchic, J.N., Leite, V.B.P.: Topography of funneled landscapes determines the thermodynamics and kinetics of protein folding. Proc. Natl. Acad. Sci. USA 109, 15763–15768 (2012)
Chu, X.K., Gan, L.F., Wang, E.K., Wang, J.: Quantifying the topography of the intrinsic energy land- scape of flexible biomolecular recognition. Proc. Natl. Acad. Sci. USA 110, E2342–E2351 (2013)
Wang, J., Zheng, X., Yang, Y., Drueckhammer, D., Wei, Y., Verkhivker, G., Wang, E.: Quantifying intrinsic specificity: a potential complement to affinity in drug screening. Phys. Rev. Lett. 99, 198101 (2007)
Yan, Z., Zheng, X., Wang, E., Wang, J.: Thermodynamic and kinetic specificities of ligand binding. Chem. Sci. 4, 2387–2395 (2013)
Zheng, X.L., Liu, Z.J., Li, D., Wang, E.K., Wang, J.: Rational drug design: the search for ras protein hydrolysis intermediate conformation inhibitors with both affinity and specificity. Curr. Pharm. Des. 19, 2246–2258 (2013)
Yan, Z.Q., Wang, J.: Quantifying the kinetic residence time as a potential complement to affinity for the aptamer selection. J. Phys. Chem. B 122, 8380–8385 (2018)
Yan, Z., Wang, J.: Incorporating specificity into optimization: evaluation of SPA using CSAR 2014 and CASF 2013 benchmarks. J. Comput. Aid. Mol. Des. 30, 219–227 (2016)
Yan, Z., Wang, J.: Specificity quantification of biomolecular recognition and its implication for drug discovery. Sci. Rep. 2, 309 (2012)
Zheng, X.L., Gan, L.F., Wang, E.K., Wang, J.: Pocket-based drug design: exploring pocket space. Aaps J. 15, 228–241 (2013)
Zheng, X.L., Wang, J.: The universal statistical distributions of the affinity, equilibrium constants, kinetics and specificity in biomolecular recognition. PLOS Comput. Biol. 11, 24 (2015)
Zheng, X.L., Wang, J.: Universal statistical fluctuations in thermodynamics and kinetics of single molecular recognition. Phys. Chem. Chem. Phys. 18, 8570–8578 (2016)
Yan, Z., Guo, L., Hu, L., Wang, J.: Specificity and affinity quantification of protein-protein interac- tions. Bioinformatics 29, 1127–1133 (2013)
Yan, Z., Wang, J.: Optimizing scoring function of protein-nucleic acid interactions with both affinity and specificity. PLoS ONE 8, e74443 (2012)
Yan, Z., Wang, J.: Optimizing the affinity and specificity of ligand binding with the inclusion of sol- vation effect. Proteins Struct. Funct. Bioinform. 83, 1632–1642 (2015)
Yang, Y.L., Li, G.H., Zhao, D.Y., Yu, H.Y., Zheng, X.L., Peng, X.D., Zhang, X., Fu, T., Hu, X.Q., Niu, M.S., Ji, X.F., Zou, L.B., Wang, J.: Computational discovery and experimental verification of tyrosine kinase inhibitor pazopanib for the reversal of memory and cognitive deficits in rat model neurodegeneration. Chem. Sci. 6, 2812–2821 (2015)
Zhao, W.J., Li, D., Liu, Z.J., Zheng, X.L., Wang, J., Wang, E.K.: Spiclomazine induces apoptosis associated with the suppression of cell viability, migration and invasion in pancreatic carcinoma cells. PLoS ONE 8, 10 (2013)
Liu, Z., Li, D., Zhao, W., Zheng, X., Wang, E.: A potent lead induces apoptosis in pancreatic cancer cells. PLoS ONE 7, e37841 (2012)
Liu, Z., Zheng, X., Yang, X., Wang, E., Wang, J.: Affinity and specificity of levamlodipine-human serum albumin interactions: insights into its carrier function. Biophys. J. 96, 3917–3925 (2009)
Liu, Z.J., Li, D., Zheng, X.L., Wang, E.K., Wang, J.: Selective induction of apoptosis: promising therapy in pancreatic cancer. Curr. Pharm. Des. 19, 2259–2268 (2013)
Liu, Z.J., Zheng, X.L., Wang, J., Wang, E.K.: Molecular analysis of thymopentin binding to HLA-DR molecules. PLoS ONE 2, 8 (2007)
Li, D., Liu, Z.J., Zhao, W.J., Zheng, X.L., Wang, J., Wang, E.K.: A small-molecule induces apoptosis and suppresses metastasis in pancreatic cancer cells. Eur. J. Pharm. Sci. 48, 658–667 (2013)
Liu, F., Chu, X., Lu, H.P., Wang, J.: Molecular mechanism of multispecific recognition of Calmodulin through conformational changes. Proc. Natl. Acad. Sci. USA 114, E3927–E3934 (2017)
Liu, F., Qing, H., Wang, J.: Mechanochemical model of the power stroke of the single-headed motor protein KIF1A. J. Phys. Chem. B 122, 11002–11013 (2018)
Wang, Y., Chu, X.K., Longhi, S., Roche, P., Han, W., Wang, E.K., Wang, J.: Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in mea- sles virus nucleoprotein. Proc. Natl. Acad. Sci. USA 110, E3743–E3752 (2013)
Wang, Y., Chu, X.K., Suo, Z.C., Wang, E.K., Wang, J.: Multidomain protein solves the folding prob- lem by multifunnel combined landscape: theoretical investigation of a Y-family DNA polymerase. J. Am. Chem. Soc. 134, 13755–13764 (2012)
Chu, X., Liu, F., Maxwell, B.A., Wang, Y., Suo, Z., Wang, H., Han, W., Wang, J.: Dynamic confor- mational change regulates the protein-DNA recognition: an investigation on binding of a Y-family polymerase to its target DNA. PLoS Comput. Biol. 10, e1003804 (2014)
Yan, Z., Wang, J.: Funneled energy landscape unifies principles of protein binding and evolution. Proc. Natl. Acad. Sci. USA 117, 27218–27223 (2020)
Yan, Z., Wang, J.: Superfunneled energy landscape of protein evolution unifies the principles of pro- tein evolution, folding, and design. Phys. Rev. Lett. 122, 018103 (2019)
Yan, Z., Wang, J.: SPA-LN: a scoring function of ligand–nucleic acid interactions via optimizing both specificity and affinity. Nucleic Acids Res. 45, e110 (2017)
Kar, G., Keskin, O., Gursoy, A., Nussinov, R.: Allostery and population shift in drug discovery. Curr. Opin. Pharmacol. 10, 715–722 (2010)
Dunker, A.K., Lawson, J.D., Brown, C.J., Williams, R.M., Romero, P., Oh, J.S., Oldfield, C.J., Campen, A.M., Ratliff, C.M., Hipps, K.W.: Intrinsically disordered protein. J. Mol. Graph. Model. 19, 26–59 (2001)
Onuchic, J.N., Levy, Y., Wolynes, P.G.: Fly-casting in protein? DNA binding:? Frustration between protein folding and electrostatics facilitates target recognition. J. Am. Chem. Soc. 129, 738–739 (2007)
Levy, Y., Wolynes, P.G., Onuchic, J.N.: Protein topology determines binding mechanism. Proc. Natl. Acad. Sci. USA 101, 511–516 (2004)
Wang, J., Xu, L., Wang, E.: Optimal specificity and function for flexible biomolecular recognition. Biophys. J. 92, L109–L111 (2007)
Zhao, L.C., Lu, H.P., Wang, J.: Exploration of multistate conformational dynamics upon ligand bind- ing of a monomeric enzyme involved in pyrophosphoryl transfer. J. Phys. Chem. B 122, 1885–1897 (2018)
Zhao, L.C., Suarez, I.P., Gauto, D.F., Rasia, R.M., Wang, J.: The key role of electrostatic interactions in the induced folding in RNA recognition by DCL1-A. Phys. Chem. Chem. Phys. 20, 9376–9388 (2018)
Chu, X.K., Suo, Z.C., Wang, J.: Investigating the trade-off between folding and function in a multid- omain Y-family DNA polymerase. Elife 9, 40 (2020)
Chu, X.K., Suo, Z.C., Wang, J.: Confinement and crowding effects on folding of a multidomain Y-family DNA polymerase. J. Chem. Theory. Comput. 16, 1319–1332 (2020)
Chu, X.K., Wang, J.: Position-, disorder-, and salt-dependent diffusion in binding-coupled-folding of intrinsically disordered proteins. Phys. Chem. Chem. Phys. 21, 5634–5645 (2019)
Chu, X.K., Wang, Y., Gan, L.F., Bai, Y.W., Han, W., Wang, E.K., Wang, J.: Importance of electro- static interactions in the association of intrinsically disordered histone chaperone Chz1 and histone H2A.Z-H2B. PLOS Comput. Biol. 8, 11 (2012)
Chu, W.T., Chu, X., Wang, J.: Investigations of the underlying mechanisms of HIF-1α and CITED2 binding to TAZ1. Proc. Natl. Acad. Sci. USA 117, 201915333 (2020)
Chu, W.T., Chu, X.K., Wang, J.: Binding mechanism and dynamic conformational change of C subu- nit of PKA with different pathways. Proc. Natl. Acad. Sci. USA 114, E7959–E7968 (2017)
Chu, W.T., Clarke, J., Shammas, S.L., Wang, J.: Role of non-native electrostatic interactions in the coupled folding and binding of PUMA with Mcl-1. PLOS Comput. Biol. 13, 20 (2017)
Chu, W.T., Nesbitt, N.M., Gnatenko, D.V., Li, Z., Zhang, B., Seeliger, M.A., Browne, S., Mantle, T.J., Bahou, W.F., Wang, J.: Enzymatic activity and thermodynamic stability of biliverdin IXβ reductase are maintained by an active site serine. Chem. Eur. J. 23, 1891–1900 (2017)
Chu, W.T., Shammas, S.L., Wang, J.: Charge interactions modulate the encounter complex ensemble of two differently charged disordered protein partners of KIX. J. Chem. Theory. Comput. 16, 3856– 3868 (2020)
Chu, W.T., Suo, Z.C., Wang, J.: Binding-induced conformational changes involved in sliding clamp PCNA and DNA polymerase DPO4. Iscience 23, 24 (2020)
Chu, W.T., Wang, J.: Energy landscape topography reveals the underlying link between binding speci- ficity and activity of enzymes. Sci. Rep. 6, 9 (2016)
Chu, W.T., Wang, J.: Quantifying the intrinsic conformation energy landscape topography of proteins with large-scale open-closed transition. ACS Cent. Sci. 4, 1015–1022 (2018)
Chu, W.T., Wang, J.: Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble. PLOS Comput. Biol. 17, 20 (2021)
Chu, W.T., Wang, J.: Influence of sequence length and charged residues on Swc5 binding with histone H2A–H2B. Proteins Struct. Funct. Bioinform. 89, 512–520 (2021)
Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amsterdam (2007)
Reichl, L.E.: A Modern Course in Statistical Physics, 3rd Revised and Updated Edition. University of Texas Press, Texas (1984)
Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99, 12795–12795 (2002)
Hu, G.: Stochastic Force and Nonlinear Systems. Shanghai Science Education, Shanghai (1995)
Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Computat. Phys. 22, 403–434 (1976)
Haken, H.: Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices. Springer, Berlin (1983)
Wang, J., Xu, L., Wang, E.K.: Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations. Proc. Natl. Acad. Sci. USA 105, 12271–12276 (2008)
Xu, L., Wang, J.: Quantifying the potential and flux landscapes of multi-locus evolution. J. Theor. Biol. 422, 31–49 (2017)
Xu, L., Wang, J.: Landscape and flux for quantifying global stability and dynamics of game theory. PLoS ONE 13, e0201130 (2018)
Xu, L., Wang, J.: Curl flux as a dynamical origin of the bifurcations/phase transitions of nonequilib- rium systems: cell fate decision making. J. Phys. Chem. B 124, 2549–2559 (2020)
Xu, L., Zhang, F., Wang, E.K., Wang, J.: The potential and flux landscape, Lyapunov function and non-equilibrium thermodynamics for dynamic systems and networks with an application to signal- induced Ca2+ oscillation. Nonlinearity 26, R69–R84 (2013)
Xu, L., Zhang, F., Zhang, K., Wang, E.K., Wang, J.: The potential and flux landscape theory of ecol- ogy. PLoS ONE 9, e86746 (2014)
Xu, L., Zhang, K., Wang, J.: Exploring the mechanisms of differentiation, dedifferentiation, repro- gramming and transdifferentiation. PLoS ONE 9, e105216 (2014)
Zhang, F., Xu, L., Zhang, K., Wang, E.K., Wang, J.: The potential and flux landscape theory of evolu- tion. J. Chem. Phys. 137, 065102 (2012)
Gardiner, C.W.: Handbook of Stochastic Methods, Stochastic Processes in Physics & Chemistry. Elsevier, New York (1985)
Haken, H.: Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices. Springer, Berlin (1987)
Wang, J., Zhang, K., Lu, H.Y., Wang, E.K.: Dominant Kinetic Paths on Biomolecular Binding- Folding Energy Landscape. Phys. Rev. Lett. 96, 168101 (2006)
Wang, J., Zhang, K., Wang, E.: Kinetic paths, time scale, and underlying landscapes: a path inte- gral framework to study global natures of nonequilibrium systems and networks. J. Chem. Phys. 133, 125103 (2010)
Feng, H.D., Han, B., Wang, J.: Dominant kinetic paths of complex systems: gene networks. J Phys. Chem. Lett. 1, 1836–1840 (2010)
Feng, H.D., Zhang, K., Wang, J.: Non-equilibrium transition state rate theory. Chem. Sci. 5, 3761– 3769 (2014)
Wang, J., Xu, L., Wang, E.K., Huang, S.: The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation. Biophys. J. 99, 29–39 (2010)
Wang, J., Zhang, K., Lu, H.Y., Wang, E.K.: Quantifying kinetic paths of protein folding. Biophys. J. 89, 1612–1620 (2005)
Yan, H., Wang, J.: Quantification of motor network dynamics in Parkinson’s disease by means of landscape and flux theory. PLoS ONE 12, e0174364 (2017)
Yan, H., Zhang, K., Wang, J.: Physical mechanism of mind changes and tradeoffs among speed, accuracy, and energy cost in brain decision making: landscape, flux, and path perspectives. Chi- nese Phys B. 25, 078702 (2016)
Yan, H., Zhao, L., Hu, L., Wang, X., Wang, E., Wang, J.: Nonequilibrium landscape theory of neu- ral networks. Proc. Natl. Acad. Sci. USA 110, E4185–E4194 (2013)
Wang, J., Huang, B., Xia, X., Sun, Z.: Funneled landscape leads to robustness of cell networks: yeast cell cycle. PLOS Comput. Biol. 2, e147 (2006)
Xu, L.F., Shi, H.L., Feng, H.D., Wang, J.: The energy pump and the origin of the non-equilibrium flux of the dynamical systems and the networks. J. Chem. Phys. 136, 165102 (2012)
Gérard, C., Goldbeter, A.: Temporal self-organization of the cyclin/Cdk network driving the mam- malian cell cycle. Proc. Natl. Acad. Sci. USA 106, 21643–21648 (2009)
Lv, C., Li, X., Li, F., Li, T.: Energy landscape reveals that the budding yeast cell cycle is a robust and adaptive multi-stage process. PLoS Comput. Biol. 11, e1004156 (2015)
Ferrell, J., Tsai, T.C., Yang, Q.: Modeling the cell cycle: why do certain circuits oscillate? Cell
144, 874–885 (2011)
Bo, H., Jin, W.: Quantifying robustness and dissipation cost of yeast cell cycle network: the fun- neled energy landscape perspectives. Biophys. J. 92, 3755–3763 (2007)
Yang, Q., Ferrell, J.E., Jr.: The Cdkl-APC/C cell cycle oscillator circuit functions as a time delayed, ultra sensitive switch. Nat. Cell Biol. 15, 519 (2013)
Tsai, Y.C., Theriot, J.A., Ferrell, J.E.: Changes in oscillatory dynamics in the cell cycle of early
Xenopus laevis embryos. PLoS Biol. 12, e1001788 (2014)
Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle is robustly designed. Proc. Natl. Acad. Sci. USA 101, 4781–4786 (2004)
Li, C.H., Wang, J.: Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle. Proc. Natl. Acad. Sci. USA 111, 14130–14135 (2014)
Han, B., Wang, J.: Quantifying robustness and dissipation cost of yeast cell cycle network: The funneled energy landscape perspectives. Biophys. J. 92, 3755–3763 (2007)
Wang, J., Li, C.H., Wang, E.K.: Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network. Proc. Natl. Acad. Sci. USA 107, 8195–8200 (2010)
Zhang, K., Wang, J.: Exploring the underlying mechanisms of the Xenopus laevis embryonic cell cycle. J. Phys. Chem. B 122, 5487–5499 (2018)
Kauffman, S.: Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178 (1969)
Kauffman, S.: Differentiation of malignant to benign cells. J. Theor. Biol. 31, 429–451 (1971)
Zhang, B., Wolynes, P.G.: Stem cell differentiation as a many-body problem. Proc. Natl. Acad. Sci. USA 111, 10185–10190 (2014)
Waddington, C.H.: The strategy of the genes. A discussion of some aspects of theoretical biology. With an appendix by H. Kacser (1957)
Chickarmane, V., Peterson, C.: A computational model for understanding stem cell, trophectoderm and endoderm lineage determination. PLoS ONE 3, e3478 (2008)
Jiang, J.M., Chan, Y.S., Loh, Y.H., Cai, J., Tong, G.Q., Lim, C.A., Robson, P., Zhong, S., Ng, H.H.: A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat. Cell Biol. 10, 353–360 (2008)
Sui, H., Ernberg, I., Kauffman, S.: Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Dev. Biol. 20, 869–876 (2009)
Li, C.H., Wang, J.: Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths. PLOS Comput. Biol. 9, e1003165 (2013)
Wang, J., Zhang, K., Xu, L., Wang, E.: Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl. Acad. Sci. USA 108, 8257–8262 (2011)
Zhang, K., Wang, J.: Exploring the underlying mechanisms of the coupling between cell differentia- tion and cell cycle. J. Phys. Chem. B 123, 3490–3498 (2019)
Li, C.H., Wang, J.: Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation. J. R. Soc. Interface 10, 20130787 (2013)
Feng, H.D., Wang, J.: A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes. Sci. Rep. 2, 550 (2012)
Weinberg, H.: Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)
Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100, 57–70 (2000)
Gatenby, R.A., Vincent, T.L.: An evolutionary model of carcinogenesis. Cancer Res. 63, 6212–6220 (2003)
Wang, E., Lenferink, A., Connor-McCourt, M.O.: Cancer systems biology: exploring cancer-associated genes on cellular networks. Cell Mol. Life Sci. 64, 1752–1762 (2007)
Ao, P., Galas, D., Hood, L., Zhu, X.M.: Cancer as robust intrinsic state of endogenous molecular- cellular network shaped by evolution. Med Hypotheses. 70, 678–684 (2008)
Bar-Yam, Y., Harmon, D., Bivort, B.D.: Systems biology. Attractors and democratic dynamics. Sci- ence 323, 1016 (2009)
Basan, M., Risler, T., Joanny, J., Sastre Garau, X., Prost, J.: Homeostatic competition drives tumor growth and metastasis nucleation. Hfsp J. 3, 265–272 (2009)
Creixell, P., Schoof, E.M., Erler, J.T., Linding, R.: Navigating cancer network attractors for tumor- specific therapy. Nat. Biotechnol. 30, 842–848 (2012)
Lu, M., Jolly, M.K., Levine, H., Onuchic, J.N., Ben-Jacob, E.: MicroRNA-based regulation of epithe- lial-hybrid-mesenchymal fate determination. Proc. Natl. Acad. Sci. USA 110, 18144–18149 (2013)
Yu, C., Liu, Q., Chen, C., Yu, J., Wang, J.: Landscape perspectives of tumor, EMT, and development. Phys. Biol. 16, 051003 (2019)
Yu, C., Wang, J.: A physical mechanism and global quantification of breast cancer. PLoS ONE 11, e0157422 (2016)
Yu, C., Xu, H., Wang, J.: A global and physical mechanism of gastric cancer formation and progres- sion. J. Theor. Biol 520, 110643 (2021)
Li, C.H., Wang, J.: Quantifying the landscape for development and cancer from a core cancer stem cell circuit. Cancer Res. 75, 2607–2618 (2015)
Li, W.B., Wang, J.: Uncovering the underlying mechanism of cancer tumorigenesis and development under an immune microenvironment from global quantification of the landscape. J. R. Soc. Interface. 14, 20170105 (2017)
Chen, C., Wang, J.: A physical mechanism of cancer heterogeneity. Sci. Rep. 6, 20679 (2015)
Li, C., Wang, J.: Quantifying the underlying landscape and paths of cancer. J. R. Soc. Interface. 11, 20140774 (2014)
Kang, X., Li, C.: A dimension reduction approach for energy landscape: identifying intermediate states in metabolism-MT network. Adv. Sci. 8, 2003133 (2021)
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)
Shadlen, M.N., Newsome, W.T.: Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916 (2001)
Roitman, J.D., Shadlen, M.N.: Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002)
Abbott, L.F.: Theoretical neuroscience rising. Neuron 60, 489–495 (2008)
Yan, H., Wang, J.: Non-equilibrium landscape and flux reveal the stability-flexibility-energy tradeoff in working memory. PLOS Comp. Biol. 16, e1008209 (2020)
Han, Y., Wang, J.: Non-equilibrium landscape and flux reveal how the central amygdala circuit gates passive and active defensive responses. J. R. Soc. Interface. 16, 20180756 (2019)
Fisher, R.A.: The Genetical Theory of Natural Selection. Oxford University Press, Oxford (1930)
Rice, S.H.: Evolutionary Theory: Mathematical and Conceptual Foundations. Sinauer Associates, Massachusetts (2004)
Wright, S.: Statistical genetics and evolution. B. Am. Math. Soc. 48, 223–246 (1941)
Shraiman, R.A.N., Boris, I.: Statistical genetics and evolution of quantitative traits. Rev. Mod. Phys.
83, 1283–1300 (2011)
Valen, L.V.: A new evolutionary law. Evolut. Theory 1, 1–30 (1973)
Tokuda, N., Terada, T.P., Sasai, M.: Dynamical modeling of three-dimensional genome organization in interphase budding yeast. Biophys. J. 102, 296–304 (2012)
others, E. P. C. a.: An integrated encyclopedia of DNA elements in the human genome OPEN. Nature
489, 57–74 (2012)
Pruitt, K.D., Tatusova, T., Maglott, D.R.: NCBI Reference Sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–D504 (2005)
Lieberman-Aiden, E., Berkum, N.V., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289 (2009)
Pierro, M., Cheng, R.R., Aiden, E.L., Wolynes, P.G., Onuchic, J.N.: De novo prediction of human chromosome structures: epigenetic marking patterns encode genome architecture. Proc. Natl. Acad. Sci. USA 114, 201714980 (2017)
Yang, H., Luan, Y., Liu, T., Lee, H.J., Yue, F.: A map of cis-regulatory elements and 3D genome structures in zebrafish. Nature 588, 337–343 (2020)
Chu, X., Wang, J.: Conformational state switching and pathways of chromosome dynamics in cell cycle. Appl. Phys. Rev. 7, 031403 (2020)
Chu, X., Wang, J.: Insights into the molecular mechanisms of cell fate decision making processes from chromosome structural dynamics. bioRxiv, 2021.05.09.443292 (2021)
Chu, X., Wang, J.: Deciphering the molecular mechanism of the cancer formation by chromosome structural dynamics. bioRxiv, 2021.02.15.431330 (2021)
Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New York (1977)
Fang, X., Liu, Q., Christopher, B., Zach, H., Han, W., Jin, W., Jie, X.: Cell fate potentials and switch- ing kinetics uncovered in a classic bistable genetic switch. Nat. Commun. 9, 2787 (2018)
Jiang, Z., Tian, L., Fang, X., Zhang, K., Liu, Q., Dong, Q., Wang, E., Wang, J.: The emergence of the two cell fates and their associated switching for a negative auto-regulating gene. BMC Biol. 17, 49 (2019)
Ptashne, M.: A Genetic Switch: Phage Lambda Revisited. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2004)
Liu, Q., Wang, J.: Quantifying the flux as the driving force for nonequilibrium dynamics and ther- modynamics in non-Michaelis–Menten enzyme kinetics. Proc. Natl. Acad. Sci. USA 117, 923–930 (2019)
Nussinov, R., Wolynes, P.G.: A second molecular biology revolution? The energy landscapes of bio- molecular function. Phys. Chem. Chem. Phys. 16, 6321–6322 (2014)
Lapidus, S., Han, B., Wang, J.: Intrinsic noise, dissipation cost, and robustness of cellular networks: The underlying energy landscape of MAPK signal transduction. Proc. Natl. Acad. Sci. USA 105, 6039–6044 (2008)
Wang, J., Zhang, K., Wang, E.: Robustness and dissipation of mitogen-activated protein kinases sig- nal transduction network: Underlying funneled landscape against stochastic fluctuations. J. Chem. Phys. 129, 10B602-109 (2008)
Li, W., Wang, J.: Uncovering the underlying mechanisms of cancer metabolism through the land- scapes and probability flux quantifications. iScience 23, 101 (2020)
Luo, X., Xu, L., Han, B., Wang, J., Morozov, A.V.: Funneled potential and flux landscapes dictate the stabilities of both the states and the flow: Fission yeast cell cycle. PLOS Comput. Biol. 13, e1005710 (2017)
Li, W., Wang, J.: Uncovering the underlying physical mechanism for cancer-immunity of MHC class I diversity. Biochem. Biophys. Res. Commun. 504, 532–537 (2018)
Zhao, L., Wang, J.: Uncovering the mechanisms of Caenorhabditis elegans ageing from global quanti- fication of the underlying landscape. J. R. Soc. Interface. 13, 20160421 (2016)
Li, W., Zhao, L., Wang, J.: Searching for the mechanisms of mammalian cellular aging through underlying gene regulatory networks. Front. Genet. 11, 593 (2020)
Li, C., Wang, E., Wang, J., Sui, H.: Potential landscape and probabilistic flux of a predator prey net- work. PLoS ONE 6, e17888 (2011)
Xu, L., Patterson, D., Staver, A.C., Levine, S.A., Wang, J.: Unifying deterministic and stochastic ecological dynamics via a landscape-flux approach. Proc. Natl. Acad. Sci. USA 118, e2103779118 (2021)
Zhang, K., Wang, J.: Landscape and flux theory of non-equilibrium open economy. Physica A 482, 189–208 (2017)
Zhang, K., Liu, J., Wang, E.K., Wang, J.: Quantifying risks with exact analytical solutions of deriva- tive pricing distribution. Physica A 471, 757–766 (2017)
Zhang, F., Xu, L., Wang, J.: The dynamic and thermodynamic origin of dissipative chaos: chemical Lorenz system. Phys. Chem. Chem. Phys. 22, 27896–27902 (2020)
Li, C., Wang, E., Wang, J.: Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations. J. Chem. Phys. 136, 6681–7127 (2012)
Wu, W., Wang, J.: Nonequilibrium thermodynamics of turbulence and stochastic fluid systems. New J. Phys. 22, 113017 (2020)
Wu, W., Zhang, F., Wang, J.: Potential landscape and flux field theory for turbulence and nonequilib- rium fluid systems. Ann Phys-New York. 389, 63–101 (2018)
Zhang, Z., Wang, J.: Curl flux, coherence, and population landscape of molecular systems: Nonequi- librium quantum steady state, energy (charge) transport, and thermodynamics. J. Chem. Phys. 140, 245101 (2014)
Zhang, Z., Wang, J.: Origin of long-lived coherence and excitation dynamics in pigment-protein com- plexes. Sci. Rep. 6, 37629 (2015)
Zhang, Z., Wang, J.: Vibrational and coherence dynamics of molecules. Phys. Chem. Chem. Phys. 17, 23754–23760 (2015)
Zhang, Z., Wang, J.: Shape, orientation and magnitude of the curl quantum flux, the coherence and the statistical correlations in energy transport at nonequilibrium steady state. New J. Phys. 17, 093021 (2015)
Zhang, Z., Wang, J.: The assistance of molecular vibrations on coherent energy transfer in photosyn- thesis from the view of quantum heat engine. J. Phys. Chem. B 119, 4662–4667 (2015)
Zhang, Z., Wang, J.: Landscape, kinetics, paths and statistics of curl flux, coherence, entanglement and energy transfer in non-equilibrium quantum systems. New J. Phys. 17, 043053 (2015)
Wang, Z.H., Wu, W., Cui, G., Wang, J.: Coherence enhanced quantum metrology in a nonequilibrium optical molecule. New J. Phys. 20, 033034 (2018)
Wang, X., Zhang, Z., Wang, J.: Excitation energy transfer under strong laser drive. Phys. Rev. A. 103, 013516 (2021)
Zhang, K., Wu, W., Wang, J.: The influence of equilibrium and nonequilibrium environments on the macroscopic realism through Leggett-Garg inequality. Phys. Rev. A. 101, 052334 (2020)
Zhang, K., Wang, J.: Entanglement versus Bell nonlocality of quantum nonequilibrium steady states. Quantum Inf. Process. 20, 1–32 (2021)
Wang, Z.H., Wu, W., Wang, J.: Steady-state entanglement and coherence of two coupled qubits in equilibrium and nonequilibrium environments. Phys. Rev. A. 99, 042320 (2019)
Li, R., Wang, J.: Thermodynamics and kinetics of Hawking-Page phase transition. Phys. Rev. D. 102, 024085 (2020)
Li, R., Wang, J.: Hawking radiation and P v criticality of charged dynamical (Vaidya) black hole in anti-de Sitter space. Phys. Lett. B. 813, 136035 (2021)
Li, R., Wang, J., Wang, Y. Q., Zhang, H.: Nonequilibrium dynamical transition process between excited states of holographic superconductors. J. High Energ. Phys. 59 (2020)
Li, R., Zhang, K., Wang, J.: Thermal dynamic phase transition of Reissner-Nordström Anti-de Sitter Black Holes on free energy landscape. J High Energ Phys. 90 (2020)
Wang, H., Wang, J.: The Nonequilibrium Back Reaction of Hawking Radiation to a Schwarzschild Black Hole. Adv. High Energy Phys. 9102461 (2020)
Wang, H., Li, X., Wang, J.: Quantifying the potential and flux landscapes for nonequilibrium multi- verse, a new scenario for time arrow. J. High Energ. Phys. 2021, 105 (2021)
Whitehead, A.N.: Process and Reality. Cambridge University Press, Cambridge (1929)
Kaipayil, J.: Relationalism: A Theory of Being. JIP Publications, Bangalore (2009)
Pamanabhan, T.: Gravitation, Foundations and Frontiers. Cambridge University Press, Cambridge (2012)
Jacobson, T.: Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995)
Verlinde, E.: On the origin of gravity and the laws of Newton. J. High Energ. Phys. 2011, 029 (2011)
Zeng, Q., Wang, J.: Information landscape and flux, mutual information rate decomposition and con- nections to entropy production. Entropy-Switz 19, 678 (2017)
Zeng, Q., Wang, J.: Non-Markovian nonequilibrium information dynamics. Phys. Rev. E 98, 032123 (2018)
Zeng, Q., Wang, J. : New fluctuation theorems on Maxwell’s demon. Sci. Adv. eabf1807 (2021)
Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortschr. Phys. 61, 781–811 (2013)
Feng, H., Wang, J.: Potential and flux decomposition for dynamical systems and nonequilibrium ther- modynamics: Curvature, gauge field, and generalized fluctuation-dissipation theorem. J. Chem. Phys. 135, 234511 (2011)
Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3rd edn. Springer, Berlin (2004)
Bialek, W.: Biophysics: Searching for Principles. Princeton University Press, Princeton (2012)
Wu, W., Wang, J.: Landscape framework and global stability for stochastic reaction diffusion and general spatially extended systems with intrinsic fluctuations. J. Phys. Chem. B 117, 12908–12934 (2013)
Wu, W., Wang, J.: Potential and flux field landscape theory. I. Global stability and dynamics of spa- tially dependent non-equilibrium systems. J. Chem. Phys. 139, 121920 (2013)
Wu, W., Wang, J.: Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems. J. Chem. Phys. 141, 105 (2014)
Zhang, B., Wolynes, P.: Topology, structures, and energy landscapes of human chromosomes. Proc. Natl. Acad. Sci. USA 112, 6062–6067 (2015)
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
(参考文献可上下滑动查看)
因果涌现读书会第二季招募中
本季读书会详情与报名方式请参考:
推荐阅读
汪劲:生命系统中的非平衡物理学 物理生物能量学:非平衡物理学、能量代谢与细胞生物学的新交叉 热力学如何解释进化论:最大化熵产生原理驱动下的自然选择 《张江·复杂科学前沿27讲》完整上线! 成为集智VIP,解锁全站课程/读书会 加入集智,一起复杂!
点击“阅读原文”,加入读书会